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Figure 1: Lab scene. (a) Captured images (Only RGB data are shown). (b) Reconstruction result. Only 6 RGBD images captured by
Microsoft Kinect camera are enough for our system to reconstruct its prototype scene with 20 objects of semantic labels (eight monitors
are not numbered to avoid possible clutter). The numbers in white indicate the correspondence between objects in the image and their
reconstruction results and the overall modeling time of this lab scene is less than 18 minutes.

Abstract

We present an interactive approach to semantic modeling of indoor
scenes with a consumer-level RGBD camera. Using our approach,
the user first takes an RGBD image of an indoor scene, which is au-
tomatically segmented into a set of regions with semantic labels. If
the segmentation is not satisfactory, the user can draw some strokes
to guide the algorithm to achieve better results. After the segmen-
tation is finished, the depth data of each semantic region is used to
retrieve a matching 3D model from a database. Each model is then
transformed according to the image depth to yield the scene. For
large scenes where a single image can only cover one part of the
scene, the user can take multiple images to construct other parts of
the scene. The 3D models built for all images are then transformed
and unified into a complete scene. We demonstrate the efficien-
cy and robustness of our approach by modeling several real-world
scenes.
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1 Introduction

With the popularization of commercial RGBD cameras such as Mi-
crosoft’s Kinect, now everyone can have a low-cost and easy-to-use
device to digitalize 3D objects at home [Clark 2011]. It is naturally
of great interest to use RGBD cameras to scan and build 3D scenes
which closely match the indoor environments where people live or
work. Such 3D scenes can be used in applications for many purpos-
es, such as providing an interface for user interaction [Izadi et al.
2011] and rearranging furniture for interior design [Yu et al. 2011;
Merrell et al. 2011].

Several techniques have been proposed recently for modeling in-
door environments with a depth camera, representing the scene ge-
ometry either as point clouds [Du et al. 2011] or signed distance
fields defined over a 3D volume grid [Izadi et al. 2011]. While such
geometry representations meet application requirements to a cer-
tain extent, they do not provide the necessary flexibility required by
many other applications due to the lack of semantics. For example,
in the context of rearranging furniture, the input scene to state-of-
the-art algorithms consists of a set of independent, semantic ob-
jects, i.e., each scene object can be manipulated independently and
belongs to a category (e.g., sofa, chair, bed, etc.). The algorithms
need such semantics to calculate an optimal layout for all objects
and transform each object to its target position. As far as we know,
none of the existing modeling techniques aim to generate 3D se-
mantic models for indoor environments.

In this paper we present an interactive approach to semantic mod-
eling of indoor scenes with a consumer-level RGBD camera. Us-
ing our approach, the user first takes an RGBD image of an indoor
scene, which is automatically segmented into a set of regions with
semantic labels. If the segmentation is not satisfactory, the user can
draw some strokes to guide the algorithm to achieve better results.
After the segmentation is finished, the depth data of each semantic
region is used to retrieve a matching 3D model from a database.
Each model is then transformed according to the image depth to

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf


yield the scene. In cases where the scene is too large and a single
image can only cover one part of the scene, the user can take mul-
tiple images to construct other parts of the scene. To this end, we
require that two images taken successively have sufficient overlap
for feature matching, which ensures that the camera transformation
between the image pair can be computed. The 3D models built for
all images are then transformed and unified into the complete scene.
Fig. 2 illustrates the pipeline of our approach.

The efficiency and robustness of our approach are warranted by
three design choices. First, instead of asking the user to acquire
a RGBD video of the scene as in the Kinect Fusion or other inter-
active indoor scene modeling systems [Izadi et al. 2011; Du et al.
2011], we let the user capture only a sparse set of RGBD images
to reconstruct a medium-scale indoor scene, resulting in less us-
er interaction as well as reduced storage and computational cost.
The requirement of sufficient overlap between successively cap-
tured images is similar to that in image stitching algorithms for
panorama construction, which is very easy to satisfy in practice.
Second, when segmenting an RGBD image into semantic regions,
we allow the user to improve the result generated by the automatic
algorithm through a stroke-based interface. According to our ex-
periments, very simple user interactions can significantly improve
the accuracy of segmentation, which is difficult to achieve by auto-
matic algorithms. Moreover, the improved accuracy for the curren-
t image can be propagated to successive images automatically by
integrating the segmentation information into the learned discrim-
inative model. Finally, instead of reconstructing the precise scene
geometry, we search a 3D model database to find models that best
approximate the scene geometry. This avoids the difficulty of ac-
quiring complete and precise depth data due to severe occlusions
in indoor scenes. Although our modeling result is not exactly the
same geometry as the indoor scene, it contains most useful infor-
mation required by scene editing and other high-level applications,
i.e., the semantic objects and their layout in the scene.

We have implemented the whole modeling pipeline in a prototyp-
ing system and demonstrated its usefulness with several real-world
scenes. Besides the general approach, the paper also makes two
technical contributions:

• An interactive context-aware image segmentation and label-
ing algorithm to extract semantic regions from RGBD images.
Our image labeling algorithm first applies the automatic in-
door scene segmentation algorithm in [Silberman and Fergus
2011] to get an initial image segmentation result, and dynam-
ically adapts its learned discriminative appearance and geom-
etry models to reflect the context of the current scene to im-
prove labeling accuracy. User interaction is minimized since
the user only needs to edit the segmentation result when auto-
matic segmentation is not satisfactory.

• A random regression forest based algorithm for matching the
depth data of the segmented regions to the models in our
database. It is achieved by learning a mapping from patch-
es in the depth image to the model instance labels, i.e., the
indices of models in the database. We found that patch-level
regression is robust to noise and can handle partial data that
frequently occur in the captured depth images well. In ad-
dition, we also learn a mapping from patches to the objec-
t orientation in the image to facilitate the subsequent model
placement in constructing the indoor scene.

In the rest of the paper, we first briefly review related work in Sec. 2.
In Sec. 3, we introduce the details of the image segmentation and
labeling algorithm. Sec. 4 discusses the data-driven construction
of indoor scenes from segmented images. Experimental results and
statistics are described in Sec. 5, and the paper concludes with dis-

cussions about future work in Sec. 7.

2 Related Work

Indoor scene image segmentation and labeling. Many research
works have been devoted to segmentation and labeling of indoor
scene images. Automatic indoor scene labeling algorithms usually
learn a conditional random field (CRF) model from a large amount
of labeled training data and then optimize the learned CRF mod-
el for scene labeling [Xiong and Huber 2010; Anand et al. 2011;
Silberman and Fergus 2011; Koppula et al. 2011]. Silberman et
al. [2011] learned the data term and pairwise term in the CRF mod-
el separately. They achieved around 60% labeling accuracy for a
wide range of object class labels. A recent contribution in [Silber-
man et al. 2012] proposed to infer the structure classes and support-
ing relationship for indoor scene simultaneously to improves the
understanding of physical interaction between objects. Kopppula
et al. [2011] achieved high labeling accuracy, around 80%, through
mixed integer optimization. However, the optimization takes a long
time and thus is not suitable for interactive applications. Although
the learned model can capture the distinctive features of objects
and their contextual relationship through training data, its general-
ization capability is still not good enough to achieve a perfect seg-
mentation and labeling result for a new image. It is also possible to
apply some interactive tools to extract one object at a time from a
single image [Li et al. 2004]. However, the interaction efforts could
be very large due to the large scale of indoor scenes, as the user
needs to cutout each object in the scene.

Object detection is an alternative way to extract objects from indoor
scene images and object class classifiers need to be trained from the
labeled dataset to fulfill the detection task. Janoch et al. [2011] built
a category-level 3D object dataset using Microsoft Kinect camera
and conducted experiments on sliding-window based 3D object de-
tection in depth data. To reduce the workload in building large size
annotated dataset, Lai et al. [2010] proposed to train the classifi-
er using the annotated 3D data available in the web and adapted
it to the captured 3D data. However, similar to automatic image
segmentation algorithms, their recognition accuracy and general-
ization power now is not good enough to high-quality indoor scene
modeling.

Our image segmentation algorithm combines the best part of au-
tomatic and interactive image segmentation approaches. The user
interaction is only necessary where the segmentation result from
automatic RGBD image segmentation result is not satisfactory. We
adopt the automatic image segmentation algorithm in [Silberman
and Fergus 2011] to train our CRF model since the generated prob-
abilistic discriminative model for data term can be adapted accord-
ing to the statistical information from the current indoor scene.

Indoor scene modeling. Indoor scene modeling has attracted a
lot of research interest from both the computer graphics and vision
communities. Early solutions mount a laser scanner on a mobile
robot to scan a sequence of range images and then register the cap-
tured data using ICP (iterative closest point) or SLAM (simultane-
ous localization and mapping) techniques [Fox et al. 1999; Whitak-
er et al. 1999]. Due to the dependency on expensive hardware, these
solutions are not accessible to average users.

Image-based modeling techniques have also been applied to in-
door scene modeling. Given a sequence of 2D images of a scene,
structure-from-motion, such as bundle adjustment, and multi-
view geometry techniques can be applied to reconstruct 3D struc-
tures [Triggs et al. 2000; Hartley and Zisserman 2004; Snavely et al.
2006]. However, in image-based modeling, the detection of 2D in-
terest points in the input 2D images significantly influences the den-
sity of the reconstructed 3D points. Even though the patch-based



Segmentation Model Matching ReconstructionRGBD Image 

#2

#3

#1

Figure 2: Semantic modeling system pipeline. The input images are first segmented into semantical regions, and each segmented out region
is replaced by its similar 3D models in our database. The system progressively reconstructs and registers the whole scene using consecutively
captured RGBD-images.

framework in [Furukawa and Ponce 2010] is able to reconstruct a
dense 3D points, it is still difficult to apply it for indoor scene mod-
eling to generate dense depth maps since there exist a large amount
of textureless areas (e.g., walls) in indoor scenes. Based on the
Manhattan world assumption, Furukawa et al. [2009a] reconstruct
depth maps from 2D images of indoor scenes. Their method is lim-
ited to axis-aligned planes. Furukawa et al. [2009b] also propose an
image-based rendering method for indoor scenes by building axis-
aligned plane geometry proxies.

With the fast development of consumer-level depth cameras, it is
possible to capture dense depth maps of an indoor scene. Research
works on 3D modeling with consumer-level depth cameras focus on
the fusion of depth maps or the combination of color and depth in-
formation. A prominent example is the Kinect Fusion system [Izadi
et al. 2011]. It uses a volumetric representation to fuse the depth
map. Henry et al. [2012] explore the registration of depth maps us-
ing both color and depth information. To solve the technical chal-
lenges in automatic depth map fusion algorithms, Du et al. [2011]
propose to integrate on-line user interaction in indoor scene model-
ing.

Our work aims to reconstruct not only the geometry information of
an indoor scene but also its semantic representation from sparsely
captured depth images. The reconstruction result of our algorithm
consists of semantic geometry objects, such as chair, sofa, wall-
s and so on. It facilitates the usage of reconstructed indoor scene
models in high-level applications, such as furniture layout and so-
cial gaming. Two concurrent efforts have also been made to solve
this challenging indoor scene modeling problem [Nan et al. 2012;
Kim et al. 2012].

3D shape matching. Much research has been conducted on find-
ing models similar to an input 3D model in a database [Funkhouser
et al. 2003; Tangelder and Veltkamp 2008; Bronstein et al. 2011].
Unfortunately, these methods cannot be directly applied in our set-
ting, where only a single view of 3D models is present in the cap-
tured RGBD image. Therefore, we pose the problem of retriev-
ing similar models of a segmented object in the image as an object
instance recognition problem. Spin images [Johnson and Hebert
1999] has been widely used in 3D shape recognition problem-

s [Golovinskiy et al. 2009]. Instead of using hand-designed fea-
tures, Bo et al. [2011] proposed depth kernel descriptors for object
recognition, and Blum et al. [2011] proposed unsupervised feature
extraction based on k-means clustering for object recognition on the
RGBD object dataset in [Lai et al. 2011].

Our problem is unique: we do not require a one-to-one mapping
between the 3D models in the database and the segmented object-
s. Since the texture information in our model database usually
does not match the texture in the captured RGBD images, texture
based features are not used in our application. We thus use the ran-
dom regression forest in [Fanelli et al. 2011] since it can achieve
high recognition accuracy only using depth information. We ex-
tend the algorithm to multi-instance object recognition for indoor
scene modeling.

3 Interactive Context-aware Image Segmen-
tation and Labeling

Given RGBD indoor images captured by the user, our goal is to
segment the images into regions with a semantic object label, such
as floor, chair and monitor. To this end, we develop an interactive
context-aware image segmentation algorithm to fulfill this task. It
has two important features: (a) It integrates the benefits of both au-
tomatic and interactive approaches to achieve a high-quality seg-
mentation result. User interaction, which is implemented via a
stroke-based interface, is minimized since it is necessary only when
the automatic segmentation result is not satisfactory. (b) It reflects
the context of the current scene according to the segmentation result
through dynamically updating the appearance and geometry mod-
el learned from the NYU indoor scene image database [Silberman
and Fergus 2011]. Precisely, the statistical information from the
segmentation result is integrated to make the classifier adapt to the
specific scene and thus improve labeling accuracy.

In image segmentation, each pixel is assigned a semantic label. The
ten class labels we support for the purpose of indoor scene modeling
are sofa, table, monitor, wall, chair, floor, bed, cabinet, ceiling and
background. They are all common objects in indoor scenes, except



that background represents unknown or meaningless object in the
scene. We use the Conditional Random Field (CRF) model to solve
the labeling problem. The CRF energy function for a label c is the
following:

E(c) =
∑
i

E1(ci : xi) + λ
∑
i,j

E2(ci, cj), (1)

where the data term E1(ci : xi) measures the likelihood of label ci
for pixel i conditioned on its feature xi, and the compatibility term
E2(ci, cj) measures the consistency between labels for two neigh-
boring pixels. This objective function can be efficiently minimized
using the graph-cuts of Boykov et al. [2001].

3.1 Data Term

The data term E1(ci : xi) evaluates the likelihood of an object
label ci according to the feature xi at pixel i. It is a sum of two
terms on local appearance and geometry model to exploit the color
and depth information from the depth camera:

E1(ci : xi) = Ea(ci : xai ) + Eg(ci : xgi ), (2)

where Ea(ci, x) denotes the appearance term, and Eg(ci, x) the
geometry term. xai represents the local appearance feature com-
puted using the local color information, and xgi the local geometry
feature.

Appearance term: The appearance term Ea(ci : xai ) is the fol-
lowing:

Ea(ci : xai ) = − log((1− αp)Pt(ci|xai ) + αpPc(ci|xai )). (3)

It is a blending of two learned discriminative models: Pt(ci|xai )
from the indoor scene image database and Pc(ci|xai ) from the seg-
mentation results. The weight αp is 0.6 in our implementation to
favor the appearance model learned from the segmentation results.
The addition operation to combine the appearance features is sim-
ple, and it proved to be very efficient in our experiments.

We follow [Silberman and Fergus 2011] to learn Pt(ci|xai ) using
the NYU indoor scene image database captured by a Microsoft
Kinect camera. Specifically, we extract the SIFT feature for each
pixel from the RGB images and the depth images in the database
and concatenate them to form RGBD SIFT features. Supervised
learning is then performed using a two layer neural network with
cross-entropy loss function to compute Pt(ci|xai ). We refer readers
to [Silberman and Fergus 2011] for details.

Given the user-edited segmentation results, an appearance model
can be learned to reflect the current scene we are modeling. To this
end, we learn a discriminative model Pc(ci|xai ) from the segmen-
tation results by using k-means which is shown to be very efficient
and effective [Li et al. 2004]. Precisely, we aggregate the pixels in
the segmentation results for each object class ci and then perform
K-means on their RGB values. 32 clusters are extracted for each
object class in our current implementation. All the cluster centers
of each object class represent its appearance information. We thus
compute Pc(ci|xai ) as follows:

Pc(ci|xai ) =
1/(−d(xai , ci) + ξ)∑
j 1/(−d(xai , cj) + ξ)

, (4)

where d(x, ci) is the distance between the RGB of the current pixel
and the closest cluster center for object class ci, and ξ is a small
number, 10−6, to avoid the dividing by zero issue.

Geometry term: The geometry term Eg(ci : xgi ) is designed to be
similar to the appearance term:

Eg(ci : xgi ) = − log((1− αg)Pt(ci|xgi ) + αgPc(ci|xgi )). (5)

It also consists of two discriminative geometry models: Pt(ci|xgi )
is a geometry model learned from depth images in the NYU indoor
scene image database [Silberman and Fergus 2011], and Pt(ci|xgi )
is from the previous segmentation results. αg is also set to be 0.7.

Rather than using local depth data, the local geometry feature xgi
is based on the extracted plane primitives, since they are more re-
silient to the noise in depth data and result in more accurate de-
scriptors. The plane primitives are extracted using the efficien-
t RANSAC algorithm in [Schnabel et al. 2007]. For a pixel i in
the image, we first determine which plane primitive covers it, and
then compute three types of geometry features as xgi :

• Height hi: The distance of the projection of the pixel i on its
plane primitive to the ground.

• Size si: The size of the plane primitive that covers the pixel.

• Orientation θi: The angle between the normal of the primitive
and the ground normal.

The ground plane in RGBD images can be easily determined, since
the Microsoft Kinect camera has an accelerometer installed. Pre-
cisely, we can easily compute the roll, pitch and yaw angle of the
camera using the data from the accelerometer, and then rectify the
camera pose to be parallel to the ground. The ground is just the
plane with lowest height in the rectified depth image.

Pt(ci|xgi ) is actually represented by histograms on each geome-
try feature. To this end, we first discretize each feature into a set
of discrete values, e.g., {hi}nhi=1 for the height. Then, we build
a histogram for each discrete value, Pt(ci|hi), to describe the
posterior probability that a pixel with height hi belongs to objec-
t ci. Similarly, we build the histograms for the other two types
of features. Next, we compute the overall posterior probability as
Pt(ci|xgi ) = Pt(ci|hi)Pt(ci|si)Pt(ci|θi).

Pc(ci|xgi ) is built with the same procedure. However, they are built
on the segmented images to reflect the status of the current scene.
In reality, we found that the learnt posterior probability (histogram)
from the current scene is very sparse because the variance of the
geometric features for an object instance is small.

Model updating: During the segmentation of captured images, the
appearance and geometry model learned from the current scene,
Pc(ci|xai ) and Pc(ci|xgi ), are added into the data term to adap-
t the initial models learned from the training database to the current
scene. These two models are also continuously calculated as more
segmentation results are computed. In the case when there are only
a subset of object classes present in the current segmentation result,
we only update their conditional probability and keep the rest the
same. For the first captured image, only the discriminative mod-
els learned from indoor scene database are applied to achieve the
initial segmentation result. Usually, it needs the most interaction
in our experiments since there is no information about the current
scene at that stage. The amount of editing on other images is usual-
ly small. It depends on the scale of the indoor scene and is no more
than 30 strokes for the user to draw strokes to correct segmentation
result for medium scale indoor scene. The user can edit the seg-
mentation result anytime he/she thinks the automatic segmentation
result is not satisfactory.

3.2 Compatibility Term

The compatibility term E2(ci, cj) aims to impose a smoothness of
the labels for neighboring pixels. We compute this term as

E2(ci, cj) = δ[ci 6= cj ] sim(fi, fj). (6)



Here, fi = [r, g, b, d]T is the concatenation of the RGB values and
depth value at pixel i. The similarity between two pixels is com-

puted by sim(fi, fj) = exp(− ‖fi−fj‖2

2σ2 ), where σ is the average
distance between the features.

4 Data-Driven Construction of Indoor scenes

One option for semantic modeling is to reconstruct 3D models for
each segmented object. However, it requires high quality depth im-
ages that cover the 3D objects, which is very difficult to acquire
due to the severe occlusion in indoor scenes. We thus propose to
populate the image with 3D models in the database at appropri-
ate places. This data-driven procedure can automatically build a
semantic 3D indoor scene since the objects in the scene are con-
structed separately and associated with the high level information
from segmentation. The data-driven scene construction consists of
four sub-steps: object extraction from segmentation, matching with
random regression forest, 3D model placement and scene registra-
tion.

4.1 Matching with Random Regression Forest

The most important step in the flowchart is to match the segmented
object to 3D models in the database to locate a similar 3D model for
scene construction. A brute force approach is to perform pixel-level
comparison between the depth data of the object and the rendered
depth images of 3D models in the database. However, this approach
is of huge computational cost and susceptible to noise in the cap-
tured depth image. Moreover, it cannot well handle the partial depth
data resulting from occlusions in the indoor scene.

We pose the model matching problem as a model instance recog-
nition problem. A random forest is adopted to solve this problem
since it is fast in both training and testing even for large scale data.
It avoids the over-fitting problem of a single decision tree and has
high generalization power. Precisely, for each segmented object,
we use the discriminative random regression forest in [Fanelli et al.
2011] to learn a mapping from the sampled patches to the condi-
tional probability p(m|P̂ ) , where m is the model instance label,
i.e. its index in the database, and P̂ denotes the patch drawn from
the depth data of the object. The models with highest probability
are deemed to be similar to the segmented object. We also learn the
mapping from the depth patches to the orientation and translation
of the segmented objects to facilitate 3D model placement. Since
the mapping is built on the sampled patches, the trained random re-
gression forest can well handle partial data that frequently occurs
in the captured depth images.

Two modifications of the algorithm in [Fanelli et al. 2011] are made
so that it can be applied in our system: a) The two-class classifica-
tion in [Fanelli et al. 2011] is extended to multi-class classification.
The model instance label is treated as a discrete random variable,
and the calculation of its entropy for tree construction and of its
probability distribution at the testing stage are modified. We use a
vector to represent its probability distribution in implementation. b)
Various geometry features are adopted, such as geometry moments
at sub-patch level, spin images, to improve the recognition accu-
racy. The random regression forest algorithm itself is in essence
similar.

Note that we only need to separately train random regression forests
for each class supported in image segmentation. The model match-
ing algorithm can automatically determine which forest to use ac-
cording to the labeling information from segmentation.

Training: The random regression forest is trained from the ren-
dered depth images of 3D models in the database annotated with

model class labels, orientation angles and its distance to the virtual
camera. Each tree T in the forest T̂ = {Tt} is constructed from a

set of patches
{
P̂i = (Ii,θi)

}
randomly sampled from the training

depth images. Ii is the extracted feature computed from the pixels
in a patch, and θi = {θyaw, θpitch, θroll, t,mi} is the parameters
associated to patch P̂i, where {θyaw, θpitch, θroll} are the orienta-
tion angles and t is the distance between the model center and the
camera. mi is the model index associated to the patch.

The feature Ii is critical to the success of model matching. How-
ever, we do not know which feature will be useful for recognition
in advance. As a result, we compute several informative geometry
features to form a 496 dimensional feature vectors, and let the ran-
dom regression forest algorithm perform feature selection at each
node via maximizing information gain. The feature Ii consists of
the following entries: depth difference, normal structure tensor, ge-
ometry moment and spin image. The details of feature computation
are in the appendix.

We build the trees using the random split selection strategy [Diet-
terich 2000; Breiman 2001]. At each non-leaf node, a large number
of binary tests are performed on a randomly selected feature chan-
nel of Ii. It is defined as the following:

Ifi > τ (7)

where Ifi indicates the value of a selected feature channel f , and τ
is a randomly generated threshold. After the test, the training data
are split into two sets: the patches satisfying the test are passed to
the right child, and the remaining patches that failed the test are
passed to the left child.

The binary test that can maximize the information gain IG is s-
elected as the final test. To compute the information gain, we
model the vectors θ of the patches at each node as instances
drawn from a probability distribution p(θ) = p(a) ∗ p(m), where
a = {θyaw, θpitch, θroll, t}. p(a) = N (a; ā,

∑
a) is a multivari-

ate Gaussian distribution, and its mean and variance are estimated
from the vectors θ stored at the current node by assuming that the
variables in a are independent. p(m) is computed as the percentage
of each model class label in the node. The information gain is just
the difference between the entropy of the patches at the parent node
and the sum of entropies at its two children nodes L and R:

IG = H(a)−
∑

i∈{L,R}

wiH(ai)+α(H(m)−
∑

i∈{L,R}

wiH(mi)),

(8)
where H(a) is the entropy of the orientation angles and scale, and
H(m) the entropy of model class labels. As in [Fanelli et al. 2011],
the weight α is set to be 1.0− exp−

d
λ , where d is the depth of the

tree and λ is set to be 10. In this way, we favor classification in
the construction of tree at top levels, and the regression to other
parameters gains more weight while we descend toward the leaves.
A leaf l is constructed when the tree reaches the maximum depth
or a minimum number of patches, 20 in our implementation, are
left. The probability distribution of p(θ) and p(m) for the patches
arriving at the leaf node are calculated and stored for testing by
random forest.

Testing: In the testing, we pass the densely sampled patches from
the depth data of a segmented object to each tree in the forest. The
patches flow down the tree according to the binary test stored at
each node until they reach a leaf node. The probability distribution
at leaf node l is then used to estimate parameters of the patches.

During the testing, all sampled patches cast a large number of votes
in the parameter space. We thus need to aggregate them to get the
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Figure 3: Model updating in segmentation. (a) Left: RGB and depth images with user strokes. Middle: Segmentation result of the automatic
image segmentation algorithm in [Silberman and Fergus 2011]. Right: Segmentation result updated according to the strokes. (b) Left: Second
captured RGB and depth images from the same scene. Middle: Segmentation result of the same automatic image segmentation algorithm.
Right: Segmentation result using updated appearance and geometry model according to the segmentation result in (a). Note the improvements
on the segmentation of chair, monitor and table. Pixels without depth information are in black in the depth images.

(a) RGB Data (b) Depth Data

(c) Segmentation (d) Extraction

Figure 4: Object extraction. Note the black pixels on the depth
image are also discarded in object extraction due to lack of depth
information there.

final answer. For estimation of the model class label with a given
segmented object O, we simply average all the conditional class
distributions from the candidate votes as the final distribution:

p(m|O) =
1

K ×N

N∑
i=1

K∑
l=1

p(ml|P̂i). (9)

where N is the number of sampled patches, and K is the number
of trees in the forest.

To estimate the orientation angles, we first use the mean shift al-
gorithm to cluster the mean of the distribution of orientation angles
from all the votes. The kernel radius is set to be 15 degrees. For
those votes falling in the cluster with largest number of points, we
average the means of their orientation angles and distance distribu-
tions to give the final estimation. In this step, we discard leaves

whose variance sum of random variables is larger than 0.3, since
leaves with high variances are not informative and might introduce
outliers in the clustering.

The models of three highest probabilities are the candidates of sim-
ilar shape to the segmented object. Our system first performs mod-
el placement procedure (see the detailed description below) and
chooses the one with the highest matching score as the final result.
As an interactive system, the user is allowed to override the result
by selecting one from the suggested models.

Training data generation: For each model in the database, we ren-
der its depth images by randomly sampling the orientation angles
and distance parameters. Specifically, the roll angle is sampled in
the range from -15° to 15°, pitch from -30° to 30°, and the range of
yaw is 360°. The ranges are set so that they can simulate common
camera poses when people take pictures of an indoor scene. The
range of translation t are from 1.3 to 2.3 to cover the possible dis-
tance variation from the camera to the objects in the image. Totally
540 depth images of dimension 640 × 480 are generated for each
model in the database.

4.2 Construction Procedure

In this section, we describe the details of the other three steps in the
construction of a 3D indoor scene.

Object extraction from segmentation result: The output of the
segmentation algorithm is an object label for each pixel in the im-
age. The object extraction step is to convert this pixel-level repre-
sentation into an object-level representation. This is done by check-
ing connected regions in both the image domain and geometry do-
main.

We first extract a connected region with the same object label from
the segmented images. However, two objects separated in 3D are
possibly connected to each other in their projections to a 2D image.
Since the objects in an indoor scene are usually put on the ground,
we project the extracted connected regions in the 2D image onto
the ground plane according to the depth information, and detect in-
dependent regions in this dimension. With this operation, most ob-



jects in the scene can be correctly detected. We deem those regions,
whose average maximum class probability is less than 0.5 or their
areas are less than 3,000 pixels, to be unreliable objects that are
not suitable for reconstruction, and discard them in the subsequent
steps. Figure 4 shows the extracted objects after this preprocess-
ing. The salient objects in the scene are correctly preserved, and
the noisy regions are eliminated.

3D model placement: After the model matching with random re-
gression forest, we have determined which model in the database is
most similar to the segmented object and its estimated orientation
and scale. However, the estimated transformation usually contains
error due to noise in the depth data. 3D model placement aims to
optimize the estimated orientation and scale of the matched model
to achieve the largest overlap between the model and the segmented
object. Specifically, we maximize the following objective function
in model placement:

max
T

∑
i

exp(−d(pi,T(M))), (10)

where T contains six parameters: rotation along the normal of
ground plane, 2D translation on the ground plane and three canon-
ical scale parameters of the model, since we assume most objects
in the indoor scene are put on the ground or the plane parallel to
the ground. pi is a pixel on the segmented object. d(pi,T(M))
is the distance between pi and the model M under the transfor-
mation T, and it is computed via projecting pi to the transformed
model along its normal. If the angle between the normal at pi and
the normal at its projected point on the model exceeds a threshold
or it cannot be projected to model M along its normal, the value
of d(pi,T(M)) is set to be infinite to cancel its contribution to
the objective function. We perform gradient decent optimization to
maximize the objective function, and the derivatives are computed
numerically. An 3D model placement result is shown in Figure 5.
In case the automatic model placement result is not satisfactory, our
system allows the user to interactively adjust it.

Scene registration: To reconstruct an indoor scene, we need to reg-
ister all the reconstructed objects from the captured RGBD images
into one coordinate system. The most computation-intensive step
in registration is how to figure out the correct correspondences be-
tween two images. Similar to the registration algorithm in [Henry
et al. 2012; Du et al. 2011], we also perform the RANSAC algo-
rithm to compute the correct correspondences between frames us-
ing the SIFT feature [Lowe 2004], and the semantic labels are used
to cull the wrong correspondences. Interactive loop closure is al-
so adopted to remove the global inconsistency in frame-by-frame
registration [Du et al. 2011].

Wall and floor construction: Walls and floors are important to the
layout of the indoor scene. After object displacement, we fit planes
to those regions labeled wall and floor and compute the bound-
ing box of those 3D points as their final geometry representation.

Figure 5: Model placement. Left:The initial orientation estimated
from random regression tree. Right:Optimization result. The depth
data in Figure 4 are rendered in 3D to show the model placement
result.

Scene #Photo #Object #Stroke Labeling/placement
Bedroom 2 5 15 9 sec./10 sec.

Office 3 7 8 12 sec./12 sec.
Lab 6 20 28 23 sec./32 sec.

Lounge 11 19 30 43 sec./40 sec.

Table 1: Statistics & timing. #Stroke indicates the number of
strokes drawn by the user to refine the segmentation. Labeling in-
dicates the total segmentation and labeling time for the captured
RGBD images in seconds. Placement indicates the time in sec-
onds to replace the segmented out objects with 3D models in our
database. The major computation cost in placement is in the op-
timization of orientation and scale parameters in 3D model place-
ment.

Planes that cover image regions with less than 8,000 pixels are dis-
carded to eliminate the influence of outliers. Constraints, such as
the perpendicularity between the wall and floor, are imposed fol-
lowing the optimization procedure in [Li et al. 2011].

5 Experimental Results

We have implemented the system on a 2.83G Hz quad core Intel PC
with 8G memory and tested the indoor scene prototyping system on
a variety of indoor scenes, such as bedroom, office and lab scenes 1.
Table 1 lists the statistics and timing of the modeling of each scene.
The statistics of our 3D model database is in the supplementary
material.

Context-aware image segmentation: Figure 3 illustrates the im-
proved labeling accuracy through the context-aware image segmen-
tation. As shown in Figure 3a, the segmentation result from the au-
tomatic indoor scene image segmentation algorithm in [Silberman
and Fergus 2011] is not satisfactory. Erroneous labels occur: the
legs of the office chair are labeled to be floor and the monitors in
the scene are labeled to be bed and wall. With the user sketched
strokes to correct the label on the first image, the second image
can be segmented well with an updated appearance and geometry
model, since the updated model reflects the correlations on the ap-
pearance and shape of the objects in the same indoor scene. The
rightmost two images in Figure 3b show the comparison. The er-
roneous labels in automatic segmentation, such as the office chair
legs, monitors and table, are greatly improved by using the updated
discriminative model in the data terms for graph cut. Overall, in
the semantic of indoor scene modeling, the number of user strokes
required in context-aware image segmentation is around 40% less
than the strokes required to correct the segmentation result from
fully automatic indoor scene image segmentation algorithm in [Sil-
berman and Fergus 2011].

Model matching: There are a few parameters to control the setup
and testing of the random regression forest. We train totally 15 trees
for each forest, and the maximum tree depth is 18. The patch size is
120×80 pixels, and 75 patches are sampled in each training image.
The memory footprint of the forest is dependent on the number of
trees, their maximum depth and the probability distribution stored
at the leaf nodes. The average is around 150 mega-bytes for 40
models in our current system.

We use 25 segmented objects from the captured depth images to
test the recognition accuracy of the random regression forest. They
are selected to be of different scale and orientation. We manual-
ly determine the three best matches for them in the database, and
deem the recognition to be correct if the best matches appear in the
top three highest probabilities. The recognition accuracy is the per-
centage of success matches for them. The plot in Figure 8a shows

1Data available at http://www.weiweixu.net/indoor/indoordata.zip



(a) (b)

Figure 6: Bedroom scene modeling. (a) Captured RGBD images. (b) The reconstruction result. As the depth data of the chair leg in second
image are missing (indicated by the red rectangle), our system erroneously recognizes a chair of different style as its similar model.

(a) (b)

Figure 7: Office scene modeling. (a) Captured depth images. (b) Reconstruction result.

the recognition accuracy as a function of the number of sampled
patches at each training image. The accuracy increases with an in-
creasing number of sampled patches. We thus choose 75 in current
implementation to balance recognition accuracy and computational
cost in the training stage. The plot in Figure 8b shows the recogni-
tion accuracy is dependent on the sampling stride for testing. The
smaller the stride value, the more patches we are sampling in the
captured depth data for the testing. This plot shows that recogni-
tion accuracy benefits from densely sampled test data, since it does
not lose information in the captured data. We thus chose the stride
to be 15 for testing and the averaged testing time for a segmented
out object is 0.2 second. We also test the influence of maximum
tree depth on recognition accuracy (Figure 8c). In the current im-
plementation, we use maximum depth of 18 since it achieves better
orientation and scale estimation while keeping the recognition ac-
curacy high. Please see the supplementary material for the RGBD
images of the selected objects.

Quick-prototyping: Our system support modeling the indoor
scenes quickly from sparsely captured images. The reconstruction
procedure is progressive: Once the user captures a new image, the
objects in the image are segmented, replaced by the 3D models in
database and merged into the scene reconstructed from previous
images.

Our system quickly reconstructs small scale indoor scenes. Fig-
ure 6 shows the modeling result for a bedroom. For this small scale
indoor scene, only two RGB-D images are necessary to cover the
main featured objects in the scene for quick prototyping. Its overall
modeling session takes less than 2 minutes. Figure 7 illustrates the

reconstruction of an office room with three RGB-D images, whose
modeling session is also less than 2 minutes. Figure 11 illustrates
another reconstruction result of a bed room using NYU dataset [Sil-
berman et al. 2012], which shows that our reconstruction algorithm
do not limit to carefully captured RGBD images.

Our system is also effective in the reconstruction of medium scale
indoor scenes. Figure 1 illustrates the reconstruction result for a lab
room. Its area is around 30 square meters, and we capture 6 images
along a planned path to cover the whole scene. Due to the polariza-
tion effect in liquid crystal displays, it is possible that Microsoft
Kinect camera cannot capture its depth since the active infrared
light emitted by the camera might not be reflected (Figure 10). In
this case, we let the system to reuse matched 3D monitor models
in the scene for those monitors without depth. Even though there
are severe occlusions for the table object in the scene, our mod-
el matching algorithm can still identify the similar 3D model but
failed to detect their orientation and scales. The orientation and s-
cale of table models are interactively adjusted to match the depth
data better. The overall modeling session takes 18 minutes. Anoth-
er reconstruction result for a lounge scene is illustrated in Figure 9.
Even though it consists of objects of different styles and sizes, our
system still successfully figures out their similar models in database
to reconstruct the scene. Please see the supplementary material for
the complete set of captured RGBD images for these two medium
scale scenes.

Failure case: Due to the varying materials and lighting conditions
in a real scene, the Microsoft Kinect camera might miss the depth
data of important features of objects in the scene. As illustrated in
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Figure 9: Lounge scene with 19 objects. (a) Captured images (6 out of 11 captured images are shown here). (b) Reconstruction result. The
numbers in white indicate the correspondence between objects in the image and their reconstruction result.

Figure 6, the model matching algorithm returns a different type of
3D chair model in the database for the chair in the bottom image
since the depth data of its leg are missing.

6 Discussion

The goal of our system is to enable the average user (not a 3D ex-
pert) to model his living or working environments. To this end,
we try to automate the modeling process as much as possible while
leveraging a reasonable amount of user interaction to improve ro-
bustness. In particular, our system tries to reduce 3D interaction as
much as possible since the user is not expected to be a 3D expert.

An alternative to our approach is to develop a simple interface to
allow users to manually pick 3D models and put them together ac-
cording to the captured RGBD images. Although this is certain,
the interaction required would be tedious and much effort would
have to be devoted to manually browsing the database to find sim-
ilar models and carefully resizing them and placing them at appro-
priate positions and orientations. With today’s 3D interface, this
is especially challenging for a user without 3D expertise. With our
approach, most of this tedious manual work is automated. The most
required user interaction is to draw 2D strokes to assist the segmen-
tation algorithm. 3D models can be placed into the depth images
automatically in most cases. Thus, the interaction effort is signif-
icantly reduced even for the moderately complex scenes shown in
our paper. For all examples shown in the paper, only Figure 1 and
Figure 9 need some 3D interaction. In Figure 1 we manually placed
the monitors (due to the missing depth information in the RGBD
images) and adjusted the orientation of a chair and the position of
a desk. In Figure 9 we only rotated two chairs to correct their ori-
entations. Moreover, the random-forest-regression based 3D model
retrieval can suggest the similar models matched with the depth da-
ta automatically. This capability is important since it would be time

consuming for the user to manually browse the database for similar
3D models for every object in the scene.

Our experience with medium-scale real-world scenes indicates that
this is a powerful way to model 3D scenes. We believe our results
will inspire further research on 3D scene modeling from a sparse
set of RGBD images with the help of a 3D model database and
reasonable amount of user interaction.

7 Conclusion and Future work

We presented an interactive semantic modeling approach for indoor
scenes. The captured indoor scene images are first segmented into
regions with object label, and then the segmented objects are re-
placed by their matched 3D models in the database. As the user
continues to capture images of an indoor scene, our system is capa-
ble of progressively reconstructing a prototype of the indoor scene.
The reconstructed semantic scene can directly applied in computer
graphics applications, not only in rendering and gaming which on-
ly requires geometry information but also in applications requiring
semantic scene information, such as furniture layout.

The limitation of our approach is that the geometry details of the
objects are missing in the reconstructed scene. We believe that the
similarity between the reconstructed scene and real scene can be
significantly improved if the scale of the 3D model database is in-
creased. Recognition accuracy is dependent on the quality of the
captured depth data. Although the random regression forest based
model matching algorithm can handle noise and partial data well,
it still fails to figure out the best matches when the depth data of
important features of the objects are missing. Currently, the size
of the 3D model database is relatively small, totally 180 models in
the database. The scalability of random regression tree based mod-
el recognition algorithm to large scale database needs to be further
tested in terms of the recognition accuracy and memory footprint.



(a) (b)

Figure 11: A reconstruction result using NYU Data set (http://cs.nyu.edu/ silberman/datasets). (a) Two selected indoor RGBD images. (b)
Reconstruction result.

In the future, we plan to investigate part recognition of the objects
in the scene to facilitate deformation of the model in the database to
better fit the acquired depth data. We are also interested in various
applications of semantic indoor scene modeling, such as context
aware augmented reality, virtual indoor decoration and so on.
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Appendix

We compute a 496 dimensional feature vector I For each patch sam-
pled from depth images. The features are as follows:

a) Depth difference: Depth difference has been used in [Fanelli
et al. 2011] for head pose estimation. We compute the depth dif-
ference between the average values of two rectangular areas in the
patch to be less sensitive to the noise. The maximum size of the
rectangular area is 40 × 40 pixels in our implementation. We ran-
domly sample the starting position, weight and height of each rect-
angle, and the sampling information are kept same for each patch.
A 144 dimensional feature vector is formed by sampling 144 pairs
of rectangles for the computation of depth difference.

b) Normal structure tensor: It is used to measure the principle direc-
tions in the normal distribution of pixels in the patch. We subdivide
the patch into 2 × 3 sub-patches so that the local normal distribu-
tion can be efficiently measured. For each sub-patch, a tensor is
computed by the following formula:

G =
1

N

N∑
i

nin
T
i ,

where ni is the normal at pixel i. G is normalized by its Frobenius
norm, i.e. Ĝ = G

‖G‖F
, as the final normal structure tensor feature

at the sub-patches.

c) Geometry moments. Geometry moments are also computed at 6
sub-patches similar to normal structure tensor. For each sub-patch,
10 moments for (x, y, z) coordinates are computed with following
equation:

Mpqr =
1

N

N∑
i

xpyqzr, p+ q + r < 3.

In the computation of moments, the (x, y, z) coordinates are nor-
malized according to local axis-aligned bounding box of 3D points
in the sub-patch.

d) Spin image: Spin image [Johnson and Hebert 1999] is computed
with 16x16 bin resolution for each patch, yielding 256 features. We
found that computing principal directions at patch level for spin
image feature is less sensitive to the noise in the captured depth
image.


